Equipment Decontamination with Sparquat 256

PACFISH/INFISH Biological Opinion Effectiveness Monitoring (PIBO-EM)

Calah Seese, David Pluth, Robert Al-Chokhachy

PIBO Effectiveness Monitoring Program, USDA Forest Service, Rocky Mountain Research Station, Logan, Utah 84321 Website: http://www.fs.fed.us/biology/fishecology/emp/index.html

Introduction

- Aquatic nuisance species (ANS) can have deleterious effects on aquatic ecosystems by altering local food webs and habitat structure (Strayer et al. 1999).
- The spread of ANS throughout the Pacific Northwest is likely a combination of natural vectors (e.g., birds) and anthropogenic activities through angling and other water-related recreation. In addition to these potential sources, field biologists associated with fisheries management and research can also represent a significant vector for ANS, particularly where biologists visit numerous streams.
- PACFISH/INFISH Biological Opinion Effectiveness Monitoring (PIBO EM) is a habitat-based monitoring project with nearly 2500 sample locations on streams throughout the Interior Columbia and Upper Missouri River drainages (Figure 1).
- In response to the significant expansion of ANS in the PIBO-EM study area and elsewhere in the West (Figure 2), PIBO-EM crews initiated decontamination methods) for field gear in 2001. With the results from recent research comparing different decontamination methods (Schisler 2008), we began using Sparquat 256 as a decontamination solution for field gear in order to control the spread of ANS through PIBO-EM monitoring crews.
- Here we discuss the relative easy use of Sparquat 256, the equipment needed, and the pros and cons of using Sparquat in aquatic monitoring.

New Zealand mudsnail (Potamopyrgus antipodarum)

whirling disease (Myxobolus cerebralis)

zebra mussel (Dreissena polymorpha)

through time

'rock snot' (Didymosphenia geminata)

Methods

Treatment Steps 1,2,3

Step 1:

Remove visible mud/organic debris from equipment with a stiff bristled brush

Step 2:

Create a decontamination solution of Sparquat 256 (4.5 oz Sparquat/1 gallon water)

Step 3:

Soak for at least 10 minutes

Treatment Steps 4 & 5

Step 4:

Pour solution back into carrying container for reuse. Discard when solution no longer produces suds

Step 5:

Discard Sparquat solution down a drain that will run to a wastewater treatment facility (Sparquat 256 MSDS)

When and Where

- Decontaminate gear before leaving each stream site
- Decontaminate gear at least 100 meters from a water source

PIBO Study Area and Distribution of ANS

Figure 1: PIBO EM study area and distribution of sites

References and Acknowledgements

- Cook, R.T. 2008. Sparquat 256 Material Safety Data Sheet. Spartan Chemical Company Inc., 1110 Spartan Drive, Maumee, Ohio 45537
- Schisler GJ, Vieira NKM, Walker PG. (2008) Application of Household Disinfectants to Control New Zealand Mudsnails. North American Journal of Fisheries Management 28: 1172–1176
- Bivalves A case study of zebra mussels in the Hudson River. Bioscience 49: 19-27. • Tait, C. 2008. Preventing the Spread of Aquatic Invasive Organisms Common to the Intermountain Region:

• Strayer, D.L., Caraco, N.F., Cole, J.J., Findlay, S., Pace, M.L.1999. Transformation of Freshwater Ecosystems by

- Guidance for 2008 Fire Operations. http://www.fs.fed.us/r4/resources/aquatic/guidelines/index.shtml • Aquatic invasive photos taken from: www.seagrant.umn.edu, www.stop-ans.org, flyfishyellowstone.blogspot.com
- New Zealand mudsnail maps from www.esg.montana.edu

Figure 2: New Zealand mudsnail distribution

1995

Equipment

- Large container to hold solution and scrub brush
- Sparquat 256 (we recommend an HDPE bottle for transporting in the field)
- Personal protective equipment including rubber gloves and protective eyewear
- "QUAT Check 1000" Test Strips to check concentration

Pros

- Effective against multiple ANS
 - New Zealand mudsnail
 - whirling disease
 - zebra mussel - 'rock snot'
- Simple procedure
- Time efficient
- Requires little equipment

Cons

- Sparquat 256 is potentially hazardous. Avoid skin and eye exposure, especially with the undiluted form. (Cook 2008)
- More expensive than boiling or drying
- PIBO EM spends ~\$400 a year on Sparquat 256
- Disposal

Product Information

- Quaternary ammonium disinfectant
- Designed for hospital and restaurant use
- 5 gallon bucket = \$67 or about \$10 per person per field season
- A three person crew uses less than one bucket per season
- Widely distributed across the west
- Can be stored for 2 years without losing effectiveness

